

USS-725

Data Sheet

(For Hardware Revision D)

Revision 0.94

December 6, 2000

TABLE OF CONTENTS	.I
TABLE OF TABLESI	V
TABLE OF FIGURES	v
PIN INFORMATION	. 1
OVERVIEW	. 4
USB PORT	4
Supported Descriptors DESCRIPTOR LOCATIONS STRING DESCRIPTORS ROM CONTENTS AND FORMATS USS-725 CONFIGURATION BYTE INTERNAL ROM FORMAT. Device Descriptor Configuration Descriptor Interface 0, Alternate Setting 0 (10:A0) Interface 0, Alternate Setting 1 (10:A1) Interface 0, Alternate Setting 2 (10:A2) EXTERNAL EEPROM FORMATTING PIPES Control Pipe Bulk In Pipe Bulk Out Pipe Inter-pipe Synchronization REQUESTS. Standard Requests. PRINTER CLASS SPECIFIC REQUESTS GET_DEVICE_ID GET_PORT_STATUS SOFT_RESET	4 4 5 5 6 6 6 7 8 9 10 11 12 12 12 12 12 12 13 13 13
VENDOR SPECIFIC REQUESTS	 [4] [4] [4] [4] [15] [15] [15] [15] [15]
IEEE 1284 PORT 1	16
REGISTER-BASED OPERATION 1 Standard Mode (000) 1 Bi-directional Mode (001) 1 Compatibility Mode (010) 1	l6 l6 l6 l6
	1

Table of Contents

ECP Mode (011)	
EPP Mode (100)	
ATA Mode (111)	
SEQUENCER	
Registers	
Data Register (DATA)	
Status Register (STAT)	
Control Register (CTRL)	
EPP Address Register (EPPA)	
EPP Data Register (EPPD)	
ECP Command Register (ECPA)	
Extended Control Register (ECRR)	
USS-725 Control Register (CCTR)	
USS-725 Setup Register (SETU)	
Timeout Register (TIMO)	
ATA Address Register (ATAA)	
CEQUENCED	25
SEQUENCER	
OVERVIEW	
SEQUENCER INSTRUCTIONS	
RWRI	
RRMW	
RRCM	
RREN	
WBIB	
WBOB	
DATI	
DATO	
EPPI	
NOOP	
SUBR	
RETN	
OPERATIONAL MODES	
FILTER BYPASS MODE	29
HIGH DRIVE MODE	29
SEI E-POWERED MODE	29
EXTERNAL CLOCK MODE	30
LIMBO MODE	30
DISABLE OUTPUTS MODE	30
EXTERNAL CIRCUITRY REQUIREMENTS	
ABSOLUTE MAXIMUM KATINGS	
	20
ELECTRICAL CHARACTERISTICS	
TIMING CHARACTERISTICS	
I^2C Memory Device Interease Transc	
I U IVIEMUKY DEVICE INTERFACE I IMING	
USD I KANSUEIVEK I IMING UHAKAUTEKISTICS	
PAKALLEL PORT TIMING CHARACTERISTICS	
ULUUK	
KESEI	

HYSICAL DIAGRAM

Table of Tables

Table 1 – Pin Descriptions	3
Table 2 – USS-725 Configuration Byte	6
Table 3 – Onboard Device Descriptor	6
Table 4 – Alternate Settings and Supported Endpoints	7
Table 5 – Onboard Configuration Descriptor	7
Table 6 – Interface 0, Alternate Setting 0	8
Table 7 – Interface 0, Alternate Setting 1	9
Table 8 – Interface 0, Alternate Setting 2	10
Table 9 – Configuration Byte	11
Table 10 – Device Descriptor Fields	11
Table 11 – Configuration Descriptor Fields	11
Table 12 – Interface 0:Alternate Setting 0	11
Table 13 – Interface 0: Alternate Setting 1	11
Table 14 – Interface 0: Alternate Setting 2	11
Table 15 – String Descriptor Index (0)	11
Table 16 – String Descriptor Index (0x9)	11
Table 17 – Printer Class-Specific Requests	13
Table 18 – Get Port Status Data	13
Table 19 – Vendor Specific Requests	14
Table 20 – GET_SEQ_STATUS Data	15
Table 21 – GET_1284_REGISTER Data	17
Table 22 – Data Register (DATA)	18
Table 23 – Status Register (STAT)	18
Table 24 – Control Register (CTRL)	19
Table 25 – EPP Address Register (EPPA)	19
Table 26 – EPP Data Register (EPPD)	20
Table 27 – ECP Command Register (ECPA)	20
Table 28 – Extended Control Register (ECRR)	21
Table 29 – USS-725 Control Register (CCTR)	22
Table 30 – USS-725 Setup Register (SETU)	23
Table 31 – Timeout Register (TIMO)	23
Table 32 – ATA Address Register (ATAA)	24
Table 33 – Register Write	26
Table 34 – Register Read-Modify-Write	26
iv	

Table 35 – Register Read Compare Until Match	
Table 36 – Register Read Extract Nibble	
Table 37 – Wait for Bulk In Byte	
Table 38 – Wait for Bulk Out Byte	
Table 39 – Read Register Into Pipe	
Table 40 – Write Register From Pipe	
Table 41 – EPP Data Read	
Table 42 – No Operation	
Table 43 – Execute Subroutine	
Table 44 – Return from Subroutine	
Table 45 – Limbo Mode	
Table 46 – Disable Outputs Mode	
Table 47 – Absolute Maximum Ratings	
Table 48 – DC Characteristics	
Table 49 – Power Supply Current	
Table 50 – I ² C Memory Device Interface Timing	
Table 51 – Clock Requirements	

Table of Figures

Figure 1 – Pin Layout	1
Figure 2 – External Crystal Connection	31
Figure 3 – IEEE 1284 Connections	32
Figure 4 – USB Transceiver Connection (bus-powered)	33
Figure 5 – USB Transceiver Connection (self-powered)	34
Figure 6 – I ² C Memory Device Interface Timing	37
Figure 7 – Package Outline Diagram	39

Pin Information

Figure 1 – Pin Layout

Pin	Symbol	Туре	Name/Description		
1	DA[0]	0	ATA address bit DA(0)		
2	PERROR	Ι	Parallel port PError signal		
3	PDATA0[5]	I/O	Parallel port data bus bit 5		
4	VDD5	Р	5 V (or 3.3 V) digital power supply		
5	GND	Р	Digital ground		
6	PDATA1[4]	I/O	High byte data bus bit 4		
7	NSELECTIN	0	Parallel port nSelectIn signal (active low)		
8	VDD	Р	3.3 V digital power supply		
9	NFAULT	Ι	Parallel port nFault signal (active low)		
10	PDATA0[4]	I/O	Parallel port data bus bit 4		
11	PDATA1[3]	I/O	High byte data bus bit 3		
12	GND	Р	Digital ground		
13	VDD5	Р	5 V (or 3.3 V) digital power supply		
14	NSTROBE (DIOW)	0	Parallel port nStrobe signal (active low); DIOW- in ATA mode		
15	SELECT	Ι	Parallel port Select signal		
16	PDATA0[3]	I/O	Parallel port data bus bit 3		
17	PDATA1[2]	I/O	High byte data bus bit 2		
18	NAUTOFD (DIOR)	0	Parallel port nAutoFd signal (active low); DIOR- in ATA mode		
19	BUSY	Ι	Parallel port Busy signal		
20	PDATA0[2]	I/O	Parallel port data bus bit 2		
21	PDATA1[1]	I/O	High byte data bus bit 1		
22	VDD5	Р	5 V (or 3.3 V) digital power supply		
23	GND	Р	Digital ground		
24	VDD	Р	3.3 V digital power supply		
25	NINIT	0	Parallel port nInit signal (active low)		
26	NACK (IORDY)	Ι	Parallel port nAck signal (active low); IORDY in ATA mode		
27	PDATA0[1]	I/O	Parallel port data bus bit 1		
28	PDATA1[0]	I/O	High byte data bus bit 0		
29	HLH	0	Parallel port Host Logic High (HLH) signal		
30	PLH	Ι	Parallel port Peripheral Logic High (PLH) signal		
31	PDATA0[0]	I/O	Parallel port data bus bit 0		
32	GND	Ι	Digital ground		
33	NUSB_RESET	0	USB Reset (active low)		
			Indicates that there is a bus reset condition on the USB bus.		
34	SUSPEND	0	Suspend		
			Indicates USS-725 is in suspend (due to inactivity on the USB bus).		
35	GND	Р	Digital ground		
36	CLK_LO	Ι	Clock Low (crystal or 3.3 V CMOS input)		
37	CLK_HI	0	Clock High (crystal or no connection)		
38	VDD	Р	3.3 V digital power supply		
39	PLL_VDD	Р	3.3 V analog power supply for PLL		
40	DPLS	I/O	USB DPLS (Differential +) signal		
41	DMNS	I/O	USB DMNS (Differential -) signal		
42	PLL_VSS	Р	Analog ground for PLL		
43	GND	Р	Digital ground		
44	SIXTEEN_BIT	Ι	Enables PDATA1[7:0] and ATA mode operation		
45	VDD	Р	3.3 V digital power supply		

46	CLKSEL1	Ι	Clock Select
47	CLKSEL0	Ι	Connect both CLKSEL1 and CLKSEL0 to GND to use the USS-725 with an external 12 MHz crystal.
			Connect both CLKSEL1 and CLKSEL0 to a high level (3.3 V) to use an external 48MHz clock.
48	DISABLE_OUTS	Ι	Disable Parallel Port Outputs
			Disables (sets into a high impedance state) PDATA0[7:0], PDATA1[7:0], HLH, NINIT, NAUTOFD (DIOR), NSTROBE (DIOW), NSELECTIN, CS1, CS0, and DA[2:0].
			The Disable Outputs feature may only be used when CLKSEL1 and CLKSEL0 are low.
49	RESET	Ι	This signal will cause a chip reset when driven to a high level.
50	SELF_POWERED	I/O	Causes USS-725 to report a self-powered configuration when high and a bus-powered configuration when low.
51	SDA	I/O	Serial EEPROM data line
52	SCL	0	EEPROM serial bus clock
53	PDATA1[7]	I/O	High byte data bus bit 7
54	CS1	0	ATA CS1- signal
55	CS0	0	ATA CS0- signal
56	GND	Р	Digital ground
57	VDD	Р	3.3 V digital power supply
58	PDATA0[7]	I/O	Parallel port data bus bit 7
59	VDD5	Р	5 V (or 3.3 V) digital power supply
60	PDATA1[6]	I/O	High byte data bus bit 6
61	DA[2]	0	ATA address bit DA(2)
62	DA[1]	0	ATA address bit DA(1)
63	PDATA0[6]	I/O	Parallel port data bus bit 6
64	PDATA1[5]	I/O	High byte data bus bit 5

Table 1 – Pin Descriptions

Overview

The USS-725 creates a bridge between one USB port and one parallel port. The USS-725 parallel port provides automatic support for IEEE 1284. It also includes a register mode (with a sequencer for automation of register operations) which has hardware support for IEEE 1284 Compatibility, ECP (with or without automatic hardware-based RLE compression and decompression), and EPP modes. The parallel port also provides hardware support for the ATA PIO mode protocol, for connecting to ATA-based mass storage devices.

The USS-725 contains an integrated USB transceiver, integrated IEEE 1284 buffers, an onboard oscillator, PLL, and reset block for single-chip operation.

In use, the USB port of the USS-725 is connected via a USB cable to a host computer via the downstream port of a USB hub. Host software sends commands and data to the USS-725 and receives status and data from the USS-725 using the USB protocol.

The USS-725 parallel port is connected to a peripheral device. If the peripheral is IEEE 1284 compatible, then the IEEE 1284 features and communication modes can be used. The USS-725 provides automatic support for IEEE 1284, and also provides for manual operation of the parallel port with hardware assist for IEEE 1284 and ATA (hard disk) protocols. A sequencer is provided to automate register operations and data transfer operations in manual mode.

USB Port

The USB port on the USS-725 is electrically and logically compliant with the *Universal Serial Bus Specification Revision 1.1*.

Descriptors

Supported Descriptors

- Device
- Configuration
- Interface

The USS-725 device supports one interface with three alternate settings. Interface 0, alternate settings 0 and 1 are compliant with the *Universal Serial Bus Device Class Definition for Printing Devices, Version 1.0.* Interface 0, alternate setting 2 is a vendor-specific interface.

• Endpoint

The USS-725 supports the following endpoints:

- Control endpoint. Accessible as endpoint 0 in all three alternate settings.
- Bulk Out endpoint. Accessible as endpoint 1 in all three alternate interface settings.
- Bulk In endpoint. Accessible as endpoint 2 in alternate interface settings 1 and 2.
- String

The USS-725 supports arbitrary string descriptors. For more information on strings, **see String Descriptors** on page 5.

Descriptor Locations

Descriptor data is supplied from an external ROM or other memory device. The USS-725 provides support for the 24LC01-16 family EEPROM interface. The USS-725 also contains an on-board set of device,

4

configuration, interface, and endpoint descriptors. Retrieval of the on-board descriptors will occur if no external descriptor data is supplied. These on-board descriptors may be used during development, prototyping, and manufacturing. For actual products using the USS-725, however, real descriptors must be supplied via an external device to provide correct device-specific information.

String Descriptors

The USS-725 supports USB string descriptors. These strings can be referenced by standard descriptors (e.g. a manufacturer name string indexed by the iManufacturer field in the Device Descriptor), or can be independent strings. These are stored in the external I^2C memory device in the space following that used for standard descriptors.

Table 15 shows the format of string index 0. The format and location of this string are fixed. String index 0 may contain the LANGID of exactly one language, as the USS-725 supports only a single language. Microsoft defines the LANGID codes for Windows, as described in *Developing International Software for Windows 95 and Windows NT*, Nadine Kano, Microsoft Press, Redmond, Washington. Note that the LANGID code for English is 0x0409.

In Table 16, the description for string index 0x9 is shown as an example of how to format string descriptors in general. All strings other than string index 0 are addressed by the value specified in the Descriptor Index field in the Get_Descriptor command, multiplied by four. For example, a Get_Descriptor command requesting the String Descriptor at index 0x1A would retrieve the string starting at address 0x68 in the external I^2C memory device.

ROM Contents and Formats

Internal (on-board) ROM addresses, the contents of those locations, the associated field name, and an indication whether the value may be overridden using an external EEPROM, are shown in Table 3 through Table 8. External EEPROM addresses for values that may be overridden are shown in Table 10 through Table 16. Note that the format for string index 0 is fixed, and can only include one language.

Externally supplied descriptors **must** be used for all products. The internal ROM is provided only as a convenience for prototyping and manufacturing activities. The internal ROM supplies enough information to the USB host so that the USS-725 will enumerate even when connected to an unprogrammed EEPROM.

The USS-725 supports the I²C "fast mode" interface, as found in the 24(L)C01-16 EEPROM family interface. That family allows for up to 2 kB of external storage, which may be used to store either descriptors or sequencer subroutines (see **Sequencer** on page 25). Note that if a 24(L)C04/08/16 part is used, no descriptor is allowed to span multiple pages within the EEPROM.

USS-725 Configuration Byte

The USS-725 Configuration Byte is located at the first address (address 0) in the external I^2C memory device. This byte, shown in Table 2 and referenced in Table 9, is read at power-up. Its value is used to control two parameters in the USS-725.

	USS-725 Configuration Byte							
Bit	7	6	5	4	3	2	1	0
7:2	7:2 Reserved; set to '0'.							
1	This bit controls whether the parallel port digital filters are turned on or off by default. '0' selects filters off, and '1' selects filters on. See Filter Bypass Mode on page 29.							
0	selects filters off, and '1' selects filters on. See Filter Bypass Mode on page 29. This bit controls whether the parallel port buffers always operate with totem-pole drive or whether they are normally open-drain, with a 750 ns period of totem-pole drive upon a signal transition on the parallel port ("High Drive" capability). '0' selects totem-pole drive, and '1' selects open-drain with High Drive. See High Drive Mode on page 29.						ve or a signal , and '1'	

 Table 2 – USS-725 Configuration Byte

Internal ROM Format

Device Descriptor

There is only one device descriptor for each USB device. This descriptor contains the definitions of the device class and device subclass, among other things.

Internal Address	Field Name	Internal Value	External Override	Description
0x0	bLength	0x12		Size of this descriptor in bytes.
0x1	bDescriptorType	0x01		Device descriptor type.
0x2	bcdUSB (LSB)	0x10		USB Specification release number in BCD.
0x3	bcdUSB (MSB)	0x01		
0x4	bDeviceClass	0x00	Yes	0x00 indicates "interface specific." See Table 6 through Table 8.
0x5	bDeviceSubClass	0x00	Yes	0x00 indicates "interface specific." See Table 6 through Table 8.
0x6	bDeviceProtocol	0x00	Yes	0x00 indicates "interface specific." See Table 6 through Table 8.
0x7	wMaxPacketSize0	0x40		Maximum packet size for endpoint 0 ($0x40 = 64$ bytes).
0x8	idVendor (LSB)	0xab	Yes	Vendor ID for In-System Design.
0x9	idVendor (MSB)	0x05	Yes	
0xA	idProduct (LSB)	0x01	Yes	Product ID.
0xB	idProduct (MSB)	0x10	Yes	
0xC	bcdDevice (LSB)	0x00	Yes	Device release number in BCD.
0xD	bcdDevice (MSB)	0x04		
0xE	iManufacturer	0x00	Yes	Index of string descriptor describing manufacturer.
0xF	iProduct	0x00	Yes	Index of string descriptor describing this product.
0x10	iSerialNumber	0x00	Yes	Index of string descriptor describing the device serial number.
0x11	bNumConfigurations	0x01		Number of possible configurations.

Table 3 – Onboard Device Descriptor6

In-System Design Inc.

Configuration Descriptor

The USS-725 has one configuration descriptor (see Table 5). This descriptor has one interface, which has three alternate settings. The three alternate settings and the endpoints that they support are described in Table 4.

Endpoint	Interface				
(packet size)	Alternate Setting 0	Alternate Setting 1	Alternate Setting 2		
Control pipe	Endpoint Number 0	Endpoint Number 0	Endpoint Number 0		
	(64 bytes)	(64 bytes)	(64 bytes)		
Bulk Out pipe	Endpoint Number 1	Endpoint Number 1	Endpoint Number 1		
	(64 bytes)	(64 bytes)	(64 bytes)		
Bulk In pipe	_	Endpoint Number 2	Endpoint Number 2		
		(64 bytes)	(64 bytes)		

Table 4 – Alternate Settings and Supported Endpoints

Internal Address	Field Name	Internal Value	External Override	Description
0x12	bLength	0x09		Size of this descriptor in bytes.
0x13	bdescriptorType	0x02		Configuration descriptor type.
0x14	bTotalLength (LSB)	0x47		Number of bytes in this configuration. This includes the
0x15	bTotalLength (MSB)	0x00		configuration descriptor plus all the interface and endpoint descriptors.
0x16	bNumInterfaces	0x01		The USS-725 has one interface.
0x17	bConfigurationValue	0x01		Value to use as an argument to Set Configuration to select this configuration.
0x18	iConfiguration	0x00	Yes	Index of string descriptor describing this configuration.
0x19	bmAttributes	0x80	Yes (upper two bits only)	Configuration characteristics:Bit DescriptionOn-board default7Bus-powered.'1'6Self-powered.'0'5Remote wake-up.'0'4-0Reserved, set to 0.'0'
0x1A	maxPower	0x31	Yes	Maximum power consumption of this configuration. Units are $mA*2$. $0x31 = 98 mA$.

 Table 5 – Onboard Configuration Descriptor

Internal Address	Field Name	Internal Value	External Override	Description
			Interface	Descriptor I0:A0
0x1B	blength	0x09		Size of this descriptor in bytes.
0x1C	bDescriptorType	0x04		Interface descriptor type.
0x1D	bInterfaceNumber	0x00		Zero-based value identifying the number of this interface.
0x1E	bAlternateSetting	0x00		Value used to select this alternate interface.
0x1F	bNumEndpoints	0x01		Number of endpoints used by this descriptor.
0x20	bInterfaceClass	0x07	Yes	Interface class $(0x07 = Printer Class)$.
0x21	iInterfaceSubClass	0x01	Yes	Interface subclass $(0x01 = Printer Subclass)$.
0x22	bInterfaceProtocol	0x01	Yes	Interface protocol $(0x01 = Unidirectional interface)$.
0x23	iInterface	0x00	Yes	Index of string descriptor describing this interface.
		Bul	k Out Endpoi	int Descriptor I0:A0:E1
0x24	bLength	0x07		Size of this descriptor in bytes.
0x25	bDescriptorType	0x05		Endpoint descriptor type.
0x26	bEndpointAddress	0x01		This is an Out endpoint, endpoint number 1.
0x27	bmAttributes	0x02		This is a Bulk endpoint.
0x28	wMaxPacketSize (LSB)	0x40		Maximum data transfer size $(0x0040 = 64 \text{ bytes})$.
0x29	wMaxPacketSize (MSB)	0x00		
0x2A	bInterval	0x00		Does not apply to Bulk endpoints.

Interface 0, Alternate Setting 0 (I0:A0)

Table 6 – Interface 0, Alternate Setting 0

Internal	Field Name	Internal	External	Description	
Address		Value	Override		
	Interface Descriptor 10:A1				
0x2B	bLength	0x09		Size of this descriptor in bytes.	
0x2C	bDescriptorType	0x04		Interface descriptor type.	
0x2D	bInterfaceNumber	0x00		Zero-based value identifying the number of this interface.	
0x2E	bAlternateSetting	0x01		Value used to select this alternate interface.	
0x2F	bNumEndpoints	0x02		Number of endpoints used by this descriptor.	
0x30	bInterfaceClass	0x07	Yes	Interface class $(0x07 = Printer Class)$.	
0x31	iInterfaceSubClass	0x01	Yes	Interface subclass (0x01 = Printer Subclass).	
0x32	bInterfaceProtocol	0x02	Yes	Interface protocol ($0x02 = Bidirectional interface$).	
0x33	iInterface	0x00	Yes	Index of string descriptor describing this interface.	
Bulk Out Endpoint Descriptor, I0:A1:E1					
0x34	bLength	0x07		Size of this descriptor in bytes.	
0x35	bDescriptorType	0x05		Endpoint descriptor type.	
0x36	bEndpointAddress	0x01		This is an Out endpoint, endpoint number 1.	
0x37	bmAttributes	0x02		This is a Bulk endpoint.	
0x38	wMaxPacketSize (LSB)	0x40		Maximum data transfer size $(0x0040 = 64 \text{ bytes})$.	
0x39	wMaxPacketSize (MSB)	0x00			
0x3A	bInterval	0x00		Does not apply to Bulk endpoints.	
		Bu	lk In Endpoir	nt Descriptor, I0:A1:E2	
0x3B	bLength	0x07		Size of this descriptor in bytes.	
0x3C	bDescriptorType	0x05		Endpoint descriptor type.	
0x3D	bEndpointAddress	0x82		This is an In endpoint, endpoint number 2.	
0x3E	bmAttributes	0x02		This is a Bulk endpoint.	
0x3F	wMaxPacketSize (LSB)	0x40		Maximum data transfer size $(0x0040 = 64 \text{ bytes})$.	
0x40	wMaxPacketSize (MSB)	0x00			
0x41	bInterval	0x00		Does not apply to Bulk endpoints.	

Interface 0, Alternate Setting 1 (I0:A1)

 Table 7 – Interface 0, Alternate Setting 1

Internal Address	Field Name	Internal Value	External Override	Description	
	Interface Descriptor I0:A2				
0x42	bLength	0x09		Size of this descriptor in bytes.	
0x43	bDescriptorType	0x04		Interface descriptor type.	
0x44	bInterfaceNumber	0x00		Zero-based value identifying the number of this interface.	
0x45	bAlternateSetting	0x02		Value used to select this alternate interface.	
0x46	bNumEndpoints	0x02		Number of endpoints used by this descriptor.	
0x47	bInterfaceClass	0xFF	Yes	Interface class (0xFF = vendor-specific).	
0x48	iInterfaceSubClass	0x00	Yes	Interface subclass (N/A).	
0x49	bInterfaceProtocol	0xFF	Yes	Interface protocol (0xFF = vendor-specific).	
0x4A	iInterface	0x00	Yes	Index of string descriptor describing this interface.	
Bulk Out Endpoint Descriptor, I0:A2:E1					
0x4B	bLength	0x07		Size of this descriptor in bytes.	
0x4C	bDescriptorType	0x05		Endpoint descriptor type.	
0x4D	bEndpointAddress	0x01		This is an Out endpoint, endpoint number 1.	
0x4E	bmAttributes	0x02		This is a Bulk endpoint.	
0x4F	wMaxPacketSize (LSB)	0x40		Maximum data transfer size $(0x0040 = 64 \text{ bytes})$.	
0x50	wMaxPacketSize (MSB)	0x00			
0x51	bInterval	0x00		Does not apply to Bulk endpoints.	
		Bulk	In Endpoint	Descriptor, I0:A2:E2	
0x52	bLength	0x07		Size of this descriptor in bytes.	
0x53	bDescriptorType	0x05		Endpoint descriptor type.	
0x54	bEndpointAddress	0x82		This is an In endpoint, endpoint number 2.	
0x55	bmAttributes	0x02		This is a Bulk endpoint.	
0x56	wMaxPacketSize (LSB)	0x40		Maximum data transfer size $(0x0040 = 64 \text{ bytes})$.	
0x57	wMaxPacketSize (MSB)	0x00			
0x58	BInterval	0x00		Does not apply to Bulk endpoints.	

Interface 0, Alternate Setting 2 (I0:A2)

 Table 8 – Interface 0, Alternate Setting 2

External EEPROM Formatting

EEPROM Address	Field Name
0x00	USS-725 Configuration
0x01	not used

Table 9 – Configuration Byte

EEPROM Address	Field Name
0x02	bDeviceClass
0x03	bDeviceSubClass
0x04	bDeviceProtocol
0x05	idVendor (LSB)
0x06	idVendor (MSB)
0x07	idProduct (LSB)
0x08	idProduct (MSB)
0x09	bcdDevice (LSB)
0x0A	not used
0x0B	iManufacturer
0x0C	iProduct
0x0D	iSerialNumber

Table 10 – Device Descriptor Fields

EEPROM Address	Field Name
0x0E	iConfiguration
0x0F	bmAttribute
0x10	maxPower

Table 11 – Configuration Descriptor Fields

EEPROM Address	Field Name
0x11	bInterfaceClass
0x12	bInterfaceSubClass
0x13	bInterfaceProtocol
0x14	iInterface

Table 12 – Interface	e 0:Alternate Setting 0
----------------------	-------------------------

EEPROM Address	Field Name
0x15	bInterfaceClass
0x16	bInterfaceSubClass
0x17	bInterfaceProtocol
0x18	iInterface

Table 13 – Interface 0: Alternate Setting 1

EEPROM Address	Field Name
0x19	bInterfaceClass
0x1A	bInterfaceSubClass
0x1B	bInterfaceProtocol
0x1C	iInterface

Table 14 – Interface 0: Alternate Setting 2

EEPROM Address	Field Name	
0x1D	bLength (0x4)	
0x1E	bDescriptorType (0x3)	
0x1F	LANGID (LSB)	
0x20	LANGID (MSB)	
0x21 - 0x23	not used	
Note: See LANGID table in Microsoft documentation (the code for English is 0x0409)		

Table 15 – String Descriptor Index (0)

EEPROM Address	Field Name	
0x24	bLength	
0x25	bDescriptor Type	
0x26	bString	
0x27	bString	
0x28		
Note: Strings are addressed by Index*4.		

 Table 16 – String Descriptor Index (0x9)

Pipes

The USS-725 provides three USB pipes: Control, Bulk Out, and Bulk In.

Control Pipe

The Control pipe is the default pipe, used for USB standard requests. Its maximum packet size is 64 bytes. The Control pipe is also used for class-specific and vendor-specific commands that:

- Perform a soft reset of the USS-725.
- Read Printer Class Get_Device_ID data.
- Read Printer Class Port Status data.
- Read and write the USS-725's registers.
- Control the USS-725's sequencer.
- Program data into an external EEPROM.

Bulk In Pipe

The Bulk In pipe is used to read data bytes from the peripheral in Automatic Mode, register-based ECP Mode, and when using certain sequencer instructions. Its maximum packet size is 64 bytes.

Bulk Out Pipe

The Bulk Out pipe is used to send data to the peripheral in Automatic Mode and in register-based Compatibility, EPP, or ECP Modes, and when using certain sequencer instructions. Its maximum packet size is 64 bytes.

Inter-pipe Synchronization

With commands and data going to different pipes, and data being buffered inside the USS-725, the host software must take care to maintain serialization of operations on the peripheral. This can be done by reading the registers to determine the status of the USS-725, either explicitly or using sequencer instructions.

Requests

The USS-725 responds to three different types of request:

- Standard USB device requests
- Printer Class requests
- Vendor-specific requests

Standard Requests

The USS-725 supports all USB standard device requests except the optional Set Descriptor request. These requests, which are described in Chapter 9, Device Framework, of the USB Specification, are:

- Clear Feature
- Get Configuration
- Get Descriptor (for information on String Descriptors, see String Descriptors on page 5)
- Get Interface
- Get Status
- Set Address
- Set Configuration
- Set Interface
- Set Feature

Printer Class Specific Requests

Printer Class-specific requests supported by the USS-725 are listed in Table 17.

Label	bmRequestType	bRequest	wValue	wIndex	wLength	Data
GET_DEVICE_ID	10100001B	0	Zero	Interface (MSB) and Alternate (LSB) Setting index.	Maximum length to be returned	IEEE 1284 Device ID String
GET_PORT_STATUS	10100001B	1	Zero	Zero-based Interface index.	1	Port Status byte
SOFT_RESET	00100001B	2	Zero	Zero-based Interface index.	Zero	[None]

Table 17 – Printer Class-Specific Requests

GET_DEVICE_ID

This request returns an IEEE 1284 Device ID string. This command is supported in all three alternate interface settings.

The Device ID is a length field followed by a case-sensitive string of ASCII characters. The first two bytes contain the length of the sequence, including the two length bytes. The first byte is most significant; length values of 0x0000, 0x0001, and 0x0002 are reserved.

Following the two length bytes, the sequence is composed of a series of keys and values of the form:

key: value {, value};

repeated for each key. As indicated, each key will have one value, and may have more than one value. The minimum necessary keys are MANUFACTURER, COMMAND SET, and MODEL (case sensitive). These keys may be abbreviated as MFG, CMD, and MDL. Each key (and each value) is a string of characters. Any characters except colon (:), comma (,), and semicolon (;) may be included as part of the key or value string. Any leading or trailing white space in the string is ignored by the parsing program, but still is counted as part of the overall length of the sequence.

For more details, see IEEE 1284-1994, Section 7.6.

Note: The USS-725 satisfies this request by reading Device ID data from the attached peripheral. If the peripheral does not support Device ID, the USS-725 will return a zero-length data packet to the host.

GET_PORT_STATUS

This request returns the current status of the printer. Table 18 defines the data returned and describes the format of the status data. This command is supported by the Printer Class-specific alternate interface settings (0 and 1).

Bit	Description
7-6	Reserved, will always read '0'
5	Paper error
4	Select
3	Not error: $0' = error$, $1' = no error$
2-0	Reserved, will always read '0'

Table 18 – Get Port Status Data

Note: The USS-725 satisfies this request by reporting the state of the IEEE 1284 PError, Select, and nFault signals driven by the attached peripheral. However, if the interface is in any state other than Compatibility

Mode, these signals lose their normal meanings. If the USS-725 detects that the interface is not in Compatibility Mode, it will return "benign" status of 0x18 in response to a GET_PORT_STATUS request.

SOFT_RESET

This request flushes all buffers and resets the Bulk Out and Bulk In pipes to their default states, and also resets all parallel port hardware and registers to their default state. USB conditions such as address, configuration, stall status, and data toggle status, will be unchanged. The rest of the USS-725 will be in a power-up reset state. This command is supported in all three alternate interface settings.

Vendor Specific Requests

The USS-725 supports the following vendor-specific requests:

Label	bmRequestType	bRequest	wValue	wIndex	wLength	Data
GET_1284_REGISTER	11000000B	3	MSB: register address LSB: ignored	Zero	Maximum length to be returned	Register data
SET_1284_REGISTER	0100000B	4	MSB: register address LSB: Data	Zero	Zero	[None]
GET_SEQ_STATUS	11000000B	5	Zero	Zero	Maximum length to be returned	Sequencer status bytes
SEQ_LOAD	01000000B	6	MSB: 0x00 LSB: LSB of sequence global loop count	MSB: ignored LSB: MSB of sequence global loop count	Sequencer instruction image length	Sequencer instruction image
SEQ_EXECUTE	01000000B	6	MSB: 0x80 LSB: LSB of sequence global loop count	MSB: ignored LSB: MSB of sequence global loop count	Sequencer instruction image length	Sequencer instruction image
SEQ_ABORT	0100000B	7	Zero	Zero	Zero	[None]
LOAD_EEPROM	0100000B	8	External address (lower 11 bits)	Zero	EEPROM image length	EEPROM data image
READ_EEPROM	11000000B	9	External address (lower 11 bits)	Zero	EEPROM image length	EEPROM data image

Table 19 – Vendor Specific Requests

GET_1284_REGISTER

The high byte of the wValue field specifies the address of the register that is to be read. The USS-725 responds by returning the current values in all of the parallel port registers. Thus the address specified by the host is actually only significant if the specification of the address affects the state of the USS-725. The only register addresses for which this is true are the EPP Address and EPP Data Registers. For reads of those registers, the read request will cause the appropriate read cycle to be performed on the parallel port interface, and the resulting data from the peripheral to be returned in the USB request data phase.

SET_1284_REGISTER

The wValue field specifies the address of the parallel port register to be written in the high byte and the value to be written in the low byte. The USS-725 will write the specified data into the designated register. For the EPP Address and EPP Data registers, the write will cause the appropriate write cycle to be performed on the parallel port interface.

For more information on the effect of writing registers, see **Registers** on page 17. 14

In-System Design Inc.

GET_SEQ_STATUS

The wLength field specifies the maximum length of status bytes to be returned. The USS-725 responds by returning the sequencer status bytes, as shown below.

Byte	Name	Description
0	Program Counter	Position of sequence byte currently being executed
1	Main Loop Count High	Upper eight bits of the sequencer global loop count
2	Main Loop Count Low	Lower eight bits of the sequencer global loop count
3	Status / Loop Count High	Bit 7: Sequencer active Bit 6: Sequencer crashed Bit 5: Sequencer executing subroutine Bit 4: '0' Bits 3:0: Upper four bits (19:16) of the instruction loop count
4	Loop Count Middle	Middle eight bits (15:8) of the instruction loop count
5	Loop Count High	Lower eight bits (7:0) of the instruction loop count

Table 20 – GET_SEQ_STATUS Data

For more information on using the sequencer, see Sequencer on page 25.

SEQ_LOAD

The low byte of the wValue field specifies the low byte of the sequencer global loop count. The low byte of the wIndex field specifies the high byte of the sequencer global loop count. The global loop count is a zero-based count; setting it to 0 will cause the sequence to be executed once, setting it to 1 will cause the sequence to be executed twice, etc. wLength specifies the length in bytes of the sequencer instruction image (which may be up to 128 bytes long). The data phase of this request consists of sequencer instruction image. The USS-725 loads the sequencer with sequencer instruction image and initiates execution, and immediately completes the status phase of the control request. If the host software needs to verify that the sequence has completed, it must use the GET_SEQ_STATUS request to do so.

This request should only be issued when the USS-725 is set to interface 0, alternate setting 2.

SEQ_EXECUTE

This request is identical to the SEQ_LOAD request, except that the USS-725 will not complete the status phase of the control request until the USS-725 completes execution of the sequence (either through normal completion, crashing, or aborting).

SEQ_ABORT

This request aborts the execution of the sequencer. Upon receipt of this request, the USS-725 will immediately terminate execution of the sequence.

LOAD_EEPROM

The lower 11 bits of wValue specify the starting address in the external EEPROM address to which data is to be written. Data may only be written starting on eight-byte boundaries, which means that the address value must be evenly divisible by eight. The wLength field contains the length of EEPROM image to be written. The data phase of the request consists of the data to be written to the EEPROM.

READ_EEPROM

The lower 11 bits of wValue specify the starting address in the external EEPROM address from which data is to be read. Data may only be read starting on eight-byte boundaries, which means that the address value must be evenly divisible by eight. The wLength field contains the length of EEPROM image to be read. The data phase of the request returns the requested data from the EEPROM.

IEEE 1284 Port

The IEEE 1284 port on the USS-725 is compliant with IEEE 1284-1994 standard (*IEEE Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for Personal Computers*). The parallel port operates in two distinct modes. In fully Automatic Mode, the IEEE 1284 protocol is implemented completely in hardware. Compatibility Mode, Nibble Mode, ECP Mode, and ECP with RLE Mode (with or without hardware-based RLE compression) are supported, with all negotiation, termination, and other features of the protocol handled by the hardware. The USS-725 also features a Register Mode, which presents a standard register interface to the host. These two modes provide the host with two distinct operating paradigms. In Automatic Mode, the software interacts with the USS-725 as if a USB-capable printer; while in Register Mode, the USS-725 emulates standard PC parallel port hardware. In Automatic Mode, the host application software need not know that the data being transferred over USB is actually being transferred to the peripheral via the IEEE 1284 protocol. In Register Mode, the application can interact with the USS-725 registers as if they were standard parallel port registers. The sequencer may also be used to automate register reads, writes, and data transfers.

Register-Based Operation

In its Register Mode of operation, the USS-725 emulates standard host-side parallel port hardware, with the register accesses being performed remotely over a USB connection. As in the standard register set, the Mode field in the Extended Control Register controls the interface mode. The supported modes and their meanings are listed in the **Extended Control Register (ECRR)** section on page 21, and are also described below.

Standard Mode (000)

In this mode, the parallel port is under full software control, with no form of hardware assist. Software has complete control of all parallel port signals. This mode can be used for negotiations, terminations, proprietary handshake sequences, etc. As in standard host-side parallel port hardware, the parallel port data lines are unidirectional outputs in this mode.

Bi-directional Mode (001)

This mode is identical to Standard Mode (000), except that the direction of the parallel port data lines may be controlled with Direction bit in the Control Register.

Compatibility Mode (010)

This mode provides hardware-based Compatibility Mode data transfers. Data sent to the USS-725 Bulk Out pipe will be transferred automatically to the peripheral using Compatibility Mode.

ECP Mode (011)

This mode provides hardware-based ECP Mode data transfers. To use ECP, the host software should negotiate for ECP Mode via the Control and Status Registers, then set Mode to 011. The direction of the ECP transfer is controlled by the Direction bit in the Control Register. Changing the direction of the transfer from reverse to forward also indicates to the USS-725 that any data in the buffers may be made available for reading via the Bulk In pipe.

EPP Mode (100)

This mode provides hardware-based EPP Mode data transfers. To use EPP, the host software should negotiate for EPP Mode via the Control and Status Registers, and then set Mode to 100. Data sent to the USS-725 Bulk Out pipe will be automatically transferred to the peripheral. Address reads and writes, and data reads, are accomplished by reading or writing the EPP Address and EPP Data Registers. These accesses may also be automated with the sequencer, which provides vastly improved EPP data read performance using the Bulk In pipe.

ATA Mode (111)

This mode enables a 16-bit data path for connecting the USS-725 to an ATA hard disk drive. Packing and unpacking of the data from the 8-bit USB data path to the 16-bit ATA bus is handled automatically, and hardware assist provides high-speed ATA PIO mode data and register reads and writes.

Sequencer

The USS-725 sequencer greatly improves the speeds of register transactions between the host and peripheral device by allowing a series of commands to be transferred to the USS-725 in a single USB transaction. The sequencer thus allows some of the controlling intelligence to be moved from the host CPU to the other side of the USB connection. This allows the latency penalty imposed by the host USB hardware and software to be paid only once for a large set of instructions being transferred across the bus, instead of once for each individual access.

After the USS-725 receives the instruction sequence, the sequencer parses the instructions and executes them, performing the register reads, writes, enabling of Bulk In or Bulk Out transfers, register read-modify-writes, register poling, etc. It can perform these actions several orders of magnitude faster than the same operations could be performed by software on the host PC.

The sequencer may be used to implement various protocols. While the sequencer provides access to special hardware-assist state machines for IEEE 1284 and ATA protocols, it also can be viewed as a programmable state machine which can provide control over a set of general-purpose inputs and outputs.

For added functionality and flexibility, the Sequencer may call subroutines from the external memory device which is also used to store descriptor data. These subroutines must have been programmed into the memory device before being called by an ordinary sequence.

For more information, see Sequencer on page 25.

Registers

The USS-725 provides eleven registers for access by the host. These are read and written using the GET_1284_REGISTER and SET_1284_REGISTER vendor-specific requests described above, and may also be accessed using the sequencer. The SET_1284_REGISTER request writes a value to a particular register. Writes may either affect the configuration of the hardware and/or have a direct affect on parallel port lines. In the case of the EPP Address and Data Registers, writes initiate write cycles on the parallel port. Note that no register other than the Control Register may be written when the Auto Mode bit in the Control Register is set.

The GET_1284_REGISTER returns nine register values: Status, Control, Extended Control, USS-725 Control, Data, EPP Address/Data, USS-725 Setup, Timeout, and ATA Address Registers, in that order (see Table 21).

Most registers are not affected by reads. However, a read targeting the EPP Address or EPP Data Register will initiate the appropriate read cycle on the parallel port. The value returned will be the address or data byte read from the peripheral as a result of that read cycle. Also, some bits which indicate the equivalent of interrupt status are cleared by being read.

Byte	Symbol	Register Name	Address
0	STAT	Status	1
1	CTRL	Control	2
2	ECCR	Extended Control	6
3	CCTR	USS-725 Control	7
4	DATA	Data	0
5	EPPA/EPPD	EPP Address/Data	3/4
6	SETU	USS-725 Setup	8
7	TIMO	Timeout	9
8	ATAA	ATA Address	10 (0xA)

 Table 21 – GET_1284_REGISTER Data

The eleven registers are described in detail in Table 22 through Table 32. The meanings of the Access designations for each bit in those registers are as follows:

R/W = Value read matches value written

- R = Bit is read only. Values written will have no effect.
- W = Bit is write only. Values read are not values written.

Data Reg	Data Register (DATA)					Address: 0		Reset value: 0x00	
Bit	7	6	5	4	3	2	1	0	
Symbol	D7	D6	D5	D4	D3	D2	D1	D0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
7.0	This register host-side pa Mode field readable. T field is set	er is equivale arallel port h in the Exter The read value to 001 and the ad value will	ent to and op hardware. The haded Control hade will be the he Direction has the value	perates in the he register m Register is s e value of the bit in the Co e present on	same mann ay be writte set to 000, 00 e data latche ontrol Regist the parallel	er as the Data n when Auto 01, 101, or 11 d into the reg er is set to '1 port data line	Mode is '0' Mode is '0' 10, and is alw gister unless ' (input modes)	standard and the ways the Mode le). In this	

Table 22 – Data Register (DATA)

Status Re	egister (STA	T)			Addr	ess: 1	Reset va	lue: N/A	
Bit	7	6	5	4	3	2	1	0	
Symbol	nBusy	nAck (IORDY)	PError	Select	nFault	Outputs Disabled	PLH	Timeout	
Access	R	R	R	R	R	R	R	R	
7	An inverted version of the parallel port Busy signal.								
6	The parallel port nAck signal. In ATA Mode (111), this signal is IORDY.								
5	The parallel port PError signal.								
4	The parallel port Select signal.								
3	The paralle	el port nFault	signal.						
2	Outputs Di parallel por held in a hi	sabled. This rt by assertin igh impedance	bit indicate g the DISAI ce state.	s that logic e BLE_OUTS	external to U signal. The	SS-725 has t USS-725 pa	aken control rallel port ot	of the are	
1	Peripheral	Logic High.	The parallel	port PLH si	gnal.				
0	EPP Timed peripheral and this bit cleared by	but. This bit i fails to respo will be set (a read.	ndicates tha nd to an EP unless the E	t a timeout h P read or wri PP Mask bit	as occurred ite for longer in the Contr	during an EF than 10 μs, ol register is	PP read or when the EPP read or when the EPP read set). This b	rite. If the d will abort it is	

Table 23 – Status Register (STAT)

Control F	Register (CT	TRL)			Addr	ess: 2	Reset val	ue: 0x4C
Bit	7	6	5	4	3	2	1	0
Symbol	HLH	EPP mask	Direction	Int enbl	SelectIn	nInit	AutoFd	Strobe
							(DIOR)	(DIOW)
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	The paralle	el port HLH :	signal.					
6	This bit ma register) up port contro Enable bit should alw	asks the gene oon timeout o ller chips, th in this regist ays be writte	eration of int of an EPP da is interrupt of er, so for clo en with the in	errupt status ta or address condition is g ser emulation tverse of the	(the setting of s transfer. N grouped with n of typical j Interrupt En	of the EPP T ote that in ty and control parallel port able bit.	imeout bit ir pical host-si led by the In hardware, th	the Status de parallel terrupt is bit
5	When the I direction o and when s controls the buffer. Set request. TI (where the controls the	Mode field in f the parallel set to '1' they e direction o titing the bit t his bit has no type of acce e direction o	n the Extended port data lin y are in input f the interfact o '0' will free o effect in M ss to the EPI f data transfe	ed Control R hes. When the t mode (see ' ee, and also i ee up any by odes 000 or P registers un ers using the	egister is set nis bit is set t Fable 22 abo s used to pro ces in the buf 010 (which a niquely deter Bulk pipes v	to 001, this o '0' the line ve). In ECP tect data byt fer for readi are unidirect mines the di when in ATA	bit controls of es are in outp Mode (011) es in the Bull ional only), of rection). The A mode (111)	the but mode, b, this bit k In c In br 100 is bit also).
4	This bit en status will the nAck In	ables the ger be generated nterrupt bit i	neration of ir on transitio n the Extend	iterrupt statu ns of nAck f ed Control F	s on nAck ev rom low to h Register).	vents. If this igh (this stat	bit is set, in tus being ref	terrupt lected by
3	An invertee	d version of	the parallel p	oort nSelectI	n signal.			
2	The paralle	el port nInit s	signal.					
1	An inverted inverted ve	d version of ersion of DIC	the parallel p DR- (but is u	oort nAutoFo nder hardwar	l signal. In A re control).	ATA mode (111), this sig	nal is an
0	An invertee invertee ve	d version of ersion of DIC	the parallel _I)W- (but is u	oort nStrobe Inder hardwa	signal. In A re control).	TA mode (1	11), this sign	al is an

 Table 24 – Control Register (CTRL)

EPP Add	ress Registe	r (EPPA)			Addre	ess: 3	Reset valu	ue: 0xXX
Bit	7	6	5	4	3	2	1	0
Symbol	A7	A6	A5	A4	A3	A2	A1	A0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7:0	A ₇ -A ₀ (EPI This register standard ho and the Mo initiates an This register Address Re from the per previously In ATA mo selected by while in A initiate an	P Address) er is equivale ost-side paral ode field in th EPP Addres er is always r ead transfer of eripheral. Re latched, but ode (111), this the address FA mode will ATA PIO reg	ent to and op lel port hard ne Extended is Write trans- readable. W on the paralle eads when no will not have is register is and chip sele ll initiate an gister read.	erates in the ware. The r Control Reg sfer on the pa hen the Mod el port, and t ot in Mode 1 e any effect of used for read ects in the A ATA PIO re	same manne egister may l ister is set to arallel port. e is set to 10 he value retu 00 will return on the paralle ding from or TA Address gister write,	r as the EPP be written w 100. A wri 0 a read acc rned will be n whatever we el port. writing to d register. A while a read	Address reg hen Auto Mo te to this reg ess will initia the address value has bee isk registers, write to this reg	gister in ode is '0' ister ate an EPP value read n as register gister will

Table 25 – EPP Address Register (EPPA)

EPP Data	n Register (H	EPPD)			Address: 4		Reset value: 0xXX	
Bit	7	6	5	4	3	2	1	0
Symbol	D7	D6	D5	D4	D3	D2	D1	D0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7:0	$D/$ D_6 D_5 D_4 D_3 D_2 $D1$ $D0$ R/W R/W R/W R/W R/W R/W R/W R/W R/W D_7 - D_0 (EPP Data)This register is equivalent to and operates in the same manner as the EPP Data register standard host-side parallel port hardware. The register may be written when Auto Mode is '0' and the Mode field in the Extended Control Register is set to 100. A write to this register initiates an EPP Data Write transfer on the parallel port. This register is always readable. When the Mode is set to 100 a read access will initiate an EPP Data Read transfer on the parallel port, and the value returned will be the data value read from the peripheral. Reads when not in Mode 100 will return whatever value has been previously							

 Table 26 – EPP Data Register (EPPD)

ECP Con	nmand Regi	ster (ECPA)		Address: 5		Reset value: N/A			
Bit	7	6	5	4	3	2	1	0		
Symbol	C7	C6	C5	C4	C3	C2	C1	C0		
Access	W	W	W	W	W	W	W	W		
7:0	$C7$ $C6$ $C5$ $C4$ $C3$ $C2$ $C1$ $C0$ WWWWWWW C_7 - C_0 (ECP Command)This register is equivalent to the ECP Address FIFO register in standard host-side parallel port hardware, but has some different restrictions on its usage. The register may be written when Auto Mode is '0', the Mode field in the Extended Control Register is set to 011, and there is no ECP data in either the Bulk Out buffers or in the process of being transmitted. Writes to this address in a mode other than 011 will be ignored; writes while in mode 011 and the hardware is busy will not complete until the hardware is freed up and the write can complete. This register may also be written when Auto Mode is '1' and the interface is in ECP Forward phase. The value written to this register will be transferred to the peripheral as an ECP command.									

Table 27 – ECP Command Register (ECPA)

Extended	Control Re	gister (ECF	RR)		Addr	ess: 6	Reset val	lue: 0x03	
Bit	7	6	5	4	3	2	1	0	
Symbol	Mode(2)	Mode(1)	Mode(0)	nAck interrupt	nFault interrupt	Bulk In interrupt	Bulk In empty	Bulk Out empty	
Access	R/W	R/W	R/W	R	R	R	R	R	
7:5	000	Standard	Mode	Full softw	are control,	data lines ar	e output only	1	
	001	Bi-directi	onal Mode	Full softw	vare control,	data lines ar	e bi-direction	nal	
	010	Compatib	ility Mode	Hardware	handshakin	g			
	011	ECP Mod	e	Software	negotiation,	hardware da	ta transfers		
	100	EPP Mod	e	Software negotiation, hardware data transfers					
	101	reserved							
	110	reserved							
	111	ATA Mod	le	ATA mod	le				
	In Automatic mode, this read value of this field is used to indicate the state of the USS-725								
	parallel por	t interface a	s follows:						
	000 Compatibility Mode								
	001 N	libble Mode							
	010 E	ECP Mode							
	011 E	ECP with RL	E Mode						
	100 E	Device ID in	Nibble Mod	e					
	101 io	dle							
	110 E	Device ID in	ECP Mode						
	111 E	Device ID in	ECP with R	LE Mode					
4	This bit wil the Interrup register rea	ll be set whe ot Enable bit d.	n the paralle in the Contr	l port nAck s ol Register i	signal makes s set to '1'.	s a transition Interrupt sta	from '0' to tus is cleared	1' while I by any	
3	This bit will the nFault 1	ll be set whe	n the paralle sk bit in the	l port nFault USS-725 Cc	signal make	es a transition	n from '1' to)' Interrupt	'0' while	
	also be gen	erated if the	Mask bit go	es low while	nFault is lo	w. Interrupt	status is clea	ared by	
	any register	r read.							
2	This bit wil	ll be '1' whe	n Bulk In da	ta is availab	le for reading	g by the host	, and '0' oth	erwise.	
1	This bit will process of 1	ll be clear w	hen there is l available, an	Bulk In data d clear when	available for there is not	r reading by	the host or in	1 the	
0	This bit wil	ll be set whe	n there is Bu	lk Out data	waiting in th	e buffers or	in the proces	s of being	
	transmitted	over the par	rallel port, ar	nd clear othe	rwise.				

Table 28 – Extended Control Register (ECRR)

USS-725	Control R	egister (CCT	R)		Addr	ess: 7	Reset value: 0x59	
Bit	7	6	5	4	3	2	1	0
Symbol	Manual Reverse	Slow RRCM and NOOP	Slow Instruction	Return On No Data	nFault int mask	reserved	Compress Enable	Auto Mode
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	This bit should be set before doing any operation in register mode (using the sequencer) which will put data in the Bulk In buffer, and cleared when that operation is complete, to allow the Bulk In pipe to correctly handle transmitting the end-of-data condition to the host. Failure to do so may result in USB data transfers terminating prematurely due to short packets being sent. Exception: this bit does not need to be set when using ECP Mode (011), where control of the end-of-data condition is handled by the Direction bit in the Control Register.							
6	When set, clear, each NOOP ins RRCM NOOP	each iteration h iteration is de structions is the I: 0 to 32.8 ms 1: 500 ns to 2.0	of the RRCM elayed instead is: (fast) or 0 to 05 ms (fast) or	I and NOOI by 500 ns. 1.1 s (slow) 16.75 μs to	P instruction The range o 0 68.6 ms (sl	s occur at 16 f delay time ow)	5.75 μs interva added to RRC	lls. If CM and
5	When set, the Timeo Timeout H 0 to 12	each instruction out Register. If Register. The r 28 μs (fast) or θ	on is delayed clear, each ir ange of addit 0 to 4.3 ms (s	by a length istruction is ional instru- low)	of time equa delayed by ction delay is	al 16.75 µs ti 500 ns times s thus	mes the value s the value set	e set in in the
4	If this bit for reverse to have an mode unti Register e	is set, in autom e-channel data ny reverse chan l either data is expires with no	atic mode the by sending a nel data avail returned by th data received	e USS-725 zero-length able. If this he periphera l.	will respond data packet s bit is clear, al or the amo	immediately if the periph the USS-72 punt of time	to Bulk In re heral is determ 5 will wait in set by the Tim	equests nined not reverse neout
3	This bit m (011).	asks the gener	ation of interr	rupt status c	on the falling	edge of nFa	ult when in E	CP Mode
2	For correct	ct operation, th	is bit must alv	ways be wr	itten to '0'.			
1	This bit en with RLE this bit sh for proper	nables automat Mode (either i ould be set bef operation in n	ic hardware-b n Automatic ore attempting ormal ECP (v	based RLE of or Register g to retrieve without RLH	compression mode). If so e reverse-cha E) Mode.	of reverse-c oftware desir unnel data. T	hannel data ir res to use this This bit must l	n ECP feature, be cleared
0	Setting the community the USS-7 registers a transfer in request be mode at a and buffer	is bit puts the c cations with the 25 Control Re and disables all a automatic mo efore clearing the ny time, but it rs are in a ratio	thip in fully at e peripheral we gister are reace automatic op de has occurr his bit. The b is the respons nal state befo	utomatic me vith no assis d-only. Cle eration, pro ed, the USS it can be se ibility of th re doing so	ode. When s stance from s aring this bit ovided that no 5-725 should t again to ret e host softwa	set, USS-725 software, and t enables wri one has yet t be reset via turn the USS are to make	can handle a d all registers te access to th aken place. I the SOFT_RI -725 to autom sure that the in	ll except ne other f any data ESET natic nterface

Table 29 –	USS-725	Control	Register	(CCTR)
------------	---------	---------	----------	--------

USS-725	Setup Reg	gister (SETU)			Addr	ess: 8	Reset value: 0x04	
Bit	7	6	5	4	3	2	1	0
Symbol	Hold bulk	Termination Wait	Clear Bulk Out	Force Negotia- tion	Force Compati- bility	Auto HTR	Filter Software Override	Filter Enable
Access	R/W	R/W	W	W	W	R/W	R/W	R/W
7	When this register m	s bit is set, no da 10de.	ata will be ab	ole to flow i	nto or out of	the buffers.	Effective on	ly in
6	When set, the subsection between H	, a 1-2 ms delay quent negotiatio Event 31 and Ev	is inserted b n, and also b ent 33 in <i>IEI</i>	etween any etween the EE 1284-19	automatic I ECP Setup a 94) in autom	EEE 1284 m and Forward natic mode.	ode terminati phases (that i	on and s,
5	When this '0'.	s bit is written w	vith a '1', all	Bulk Out d	ata will be c	leared. This	bit will alwa	ys read as
4	When this with a '0' This bit w	s bit is written w), the hardware vill always read	vith a '1' (and will begin au as '0'.	d the Force atomatic ne	Compatibili gotiation. E	ty bit is simu ffective only	Itaneously ways in automatic	ritten mode.
3	When this interface i Negotiatio Mode and will alway	s bit is written w is already in Cos on bit are writte I then assert nIn ys read as '0'.	with a '1', the mpatibility N n to '1' at the it for approx	hardware y Aode, no ac e same time imately 35	will terminat tion will be e, USS-725 v ms. Effectiv	e to Compat taken. If bot vill terminate re only in au	ibility Mode. h this bit and e to Compatib tomatic mode	If the the Force ility . This bit
2	When this bit is clear, automatic performance of Host Transfer Recovery handshaking will be disabled. Note that this will make it impossible for the USS-725 to negotiate to ECP Reverse phase if the peripheral stops taking forward data.							
1	When this bit is set, software can control the digital filtering of incoming parallel port signals with the Filter Enable bit. When clear, filters are controlled by Bit 1 of the USS-725 Configuration Byte in the external I2C memory device. (See Filter Bypass Mode on page 29 and ROM Contents and Formats on page 5.)							
0	Controls of is set. Set	digital filtering of the transformed time to '1' enab	of incoming les filtering;	parallel por clearing the	t signals whe	en the Filter s filtering.	Software Ove	rride bit

Table 30 – USS-725 Setup Register (SETU)

Timeout	Register (TI	MO)		Address: 9 Reset value:		ue: 0x0A				
Bit	7 6 5 4 3 2 1 0									
Symbol	Τ7	T6	T5	T4	T3	T2	T1	T0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
7:0	T_7 - T_0 (Tim When the F the appropri- not transfer return to for whatever d transferred the counter This timeor timer grant bit in the U	eout value) nost attempts riate reverse r any data fo orward. The ata has been no data to th a timeout ra ut value is al ilarity of tha ISS-725 Con	to read reve mode. If the r the length o outstanding received, w he USS-725. Inge of 0 to 2 so used in th t timer is eith trol Register	erse data in a e peripheral i of time speci Bulk In requ hich will be The timeou 25.5 seconds he sequencer her 500 ns on 5. For more i	utomatic mo indicates that fied by this v lest will be to a 0-byte data t counter ope and a defaul to count tim 16.75 µs, as information,	de, the USS- t reverse data value, USS-7 erminated by packet if the erates at a 10 t value of 1 e waited eace s determined see Table 29	-725 will neg a is available 725 will auto 7 USS-725 se e peripheral)-Hz frequen second. h instruction l by Slow Ins 9 on page 22.	gotiate to but does matically ending has cy, giving . The struction		

Table 31 – Timeout Register (TIMO)

ATA Ad	dress Regi	ster (ATAA)		Address: 10 (0xA)		Reset value: 0x1F	
Bit	7	6	5	4	3	2	1	0
Symbol	reserved	Mux High	Ignore	CS1	CS0	DA2	DA1	DA0
			nACK	(G4)	(G3)	(G2)	(G1)	(G0)
							(Auto RLE)	(Auto ECP)
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	Set to '0'.							
6	If this bit the data b 725 the ca and the B asserted h Note that pipeline a	is set, the inj us (PDATA) apability of s ulk In pipe. iigh. for data outp fter the byte	but to the U [[7:0]) rathe upporting a This bit is o but, the data currently p	SS-725 data er than the lo rbitrary prot only effectiv presented on resented on	pipeline wil ower eight (F ocols for 16- e if the SIXT n PDATA1 i PDATA0.	l be taken fro DATA0[7:0] bit data trans EEN_BIT in as always the	m the upper e). This gives fers using the put to the USS next byte in th	ight bits of the USS- sequencer S-725 is ne output
5	If this bit Mode han Busy and	is set, the Co adshake. If c nAck.	ompatibility lear, the US	Mode state SS-725 will o	machine wil check for the	l ignore nAck peripheral to	in the Comparison of the compa	atibility gle both
4	In ATA M	/lode (111), t	his bit is th	e chip select	signal CS1-			
3	In ATA M	Iode (111), t	his bit is th	e chip select	signal CS0-	•		
2:0	In ATA M	Iode (111), t	hese bits ar	e the registe	r address DA			
1	Enable Au the hardw will not at	utomatic EC are will first ttempt ECP	P with RLE try ECP w with RLE N	 In Automa ith RLE Mod lode negotia 	atic mode, if de negotiatio tion	this bit is set n. If this bit i	(as it is by de is cleared, the	fault), then hardware
0	 Will not attempt ECP with RLE Mode negotiation Enable Automatic ECP. In Automatic mode, if this bit is set (as it is by default), then the hardware will first try ECP with RLE Mode negotiation (if the Auto RLE bit is set), and then try ECP Mode. If this bit is cleared, the hardware will not attempt either ECP with RLE Mode negotiation or normal ECP Mode negotiation. Thus all Automatic mode transfers will be made in Compatibility and Nibble Modes, regardless of the capabilities of the attached peripheral device. 							
4:0	G_4-G_0 (Ge	eneral-purpo	se outputs)					
	These bits Note that general-pr	s may be use in Automatio urpose outpu	d in non-A' c mode, hov ts.	ΓA application wever, only the second secon	ons to provic the upper thr	le five genera ee bits (G ₄ -G ₂	l-purpose out _j) are availabl	put signals. e for use as

Table 32 – ATA Address Register (ATAA)

Sequencer

Overview

The USS-725 contains a sequencer that can be used to automate register mode access to the USS-725 registers and control the flow of data into and out of the USS-725 data pipelines.

The host software utilizes the sequencer as follows. The host software generates a sequence of instructions, which may be up to 128 bytes long, and downloads them to the USS-725 using the SEQ_LOAD or SEQ_EXECUTE request (see page 15). As part of the SEQ_LOAD or SEQ_EXECUTE request, the host software specifies a global loop count, which tells the USS-725 how many times to execute the associated sequence. The global loop count is a zero-based count that can be set to anywhere from 0 (the sequence executes once) to 65,535 (the sequence executes 65,536 times).

As soon as the transfer of the instruction sequence completes, the sequencer begins parsing and executing the instructions, reading and writing registers and enabling data transfer as indicated by the instructions. The sequence will continue to run until the entire sequence has been executed the number of times specified by the global loop count, or until the sequence aborts. The sequence can abort due to the detection of an invalid instruction or an RRCM mismatch timeout, or when aborted by the host software via the SEQ_ABORT request (see page 15).

The USS-725 sequencer also supports calls to subroutines stored in an external I^2C memory device. These sequences of instructions must be stored in the external memory before the sequence which calls them is sent to the USS-725. Subroutines may be programmed into the external memory using the LOAD_EEPROM request (see page 15). Each subroutine must be terminated with a RETN command. Note that subroutines stored in an external memory device are read at I^2C interface speeds, which are much slower than normal sequencer execution speeds.

Status about the sequence currently running (if the sequencer is running) or the most recent sequence (if the sequencer is not running) can be retrieved with the GET_SEQ_STATUS request (see page 15).

Sequencer Instructions

The sequencer supports 12 instructions that can be used to automate access to the USS-725 registers and control the flow of data into and out of the USS-725 data pipelines. All instructions must be byte aligned. Details of the instructions are shown in Table 33 through Table 44.

In the instructions that follow, the instruction mnemonic is given first, followed by the actual bit encoding of the instruction. The following codes are used to indicate the purpose of each bit:

R: Register Address L: Loop Count D: Data M: Data Mask U: Upper/Lower nibble A: External memory device address X: Reserved (set to zero)

RWRI	1010		
1010RRRR		DDDDDDD	
Register Writ	te		
The Data byte	e will be writte	n to the specified register.	

Table 33 – Register Write

RRMW	0001				
0001RRRR		DDDDDDD	МММММММ		
D . D					

Register Read-Modify-Write

The addressed register will be read and the returned data will be modified with the Data and Mask fields and written back. All bits in the original register data for which the corresponding bit Mask byte is set to '1' will be replaced with the corresponding bits from the Data byte. Bits in the original register data for which the corresponding Mask byte is '0' will be unchanged after the RRMW instruction.

Table 34 – Register Read-Modify-Write

RRCM	0010			
0010RRRR		LLLLLLL LLLLLLL	DDDDDDD	МММММММ

Register Read Compare Until Match

The addressed register will be read and data bits for which the corresponding Mask bit is '1' will be compared with the corresponding bits in the Data byte. Data bits for which the Mask bit is '0' will not be compared. If the bits selected by the Mask byte match, execution will pass to the next instruction. If the selected bits don't match, the loop count will be decremented and the instruction will execute again after a delay controlled by the Slow RRCM and NOOP bit in the USS-725 Control Register (see Table 29). The read/mask/compare process will continue until a match is made or the loop count expires, whichever comes first. If the loop count expires, the sequence will be aborted.

Table 35 – Register Read Compare Until Match

RREN	0011		
0011XXXU			

Register Read Extract Nibble

The Status register will be read and the bits corresponding to the lines used in IEEE 1284 Nibble Mode will be extracted and packed into the designated nibble (U = '1' for the upper nibble) in the data stream. If U is set to '1', the current nibble and a previously-latched nibble will be concatenated and loaded into the Bulk In buffer.

Table 36 – Register Read Extract Nibble

WBIB	0100			
0100LLLL		LLLLLLL	LLLLLLL	

Wait for Bulk In Byte

The sequencer will enable the data path and wait until the designated number of bytes has been placed into the Bulk In buffer before continuing. Execution will resume when the designated number of bytes has been made available to the USB host. This does not indicate that the host has actually read the data.

This command is useful for transferring data using the hardware-assisted input modes provided by the USS-725: ECP (011) and ATA (111).

Table 37 – Wait for Bulk In Byte

WBOB	0101			
0101LLLL		LLLLLLL	LLLLLLL	

Wait for Bulk Out Byte

The sequencer will enable the data path and wait until the designated number of bytes has been read from the Bulk Out buffer before continuing.

This command is useful for transferring data using the hardware assisted output modes provided by the USS-725: Compatibility (010), ECP (011), EPP (100), and ATA (111).

Table 38 – Wait for Bulk Out Byte

DATI	0110					
0110RRRR						
Read Registe	Read Register Into Pipe					
The specified	The specified register will be read and the data pushed into the Bulk In buffer.					

Table 39 – Read Register Into Pipe

DATO	0111					
0111RRRR						
Write Register From Pipe						
A byte will b	e removed from	n the Bulk Out buffer and	written into the specified re	gister.		

Table 40 – Write Register From Pipe

ЕРРІ	1001			
1001LLLL		LLLLLLL	LLLLLLL	
EPP Data Re	ad.			
	• . • • • • • • • •	1.1 .6.1 1		1 111 1 1 1

The EPP Data register will be read the specified number of times, and the data returned will be pushed into the Bulk In buffer.

Table 41 – EPP Data Read

NOOP	1000		
1000LLLL		LLLLLLL	

No Operation

The sequencer will wait for the designated number of time periods as selected by the Slow RRCM and NOOP bit in the USS-725 Control register (see Table 29) before execution passes to the next instruction.

Table 42 – No Operation

SUBR	1011		
1011XAAA		ААААААА	

Execute Subroutine

Transfers control to a sequence stored in the external memory device (e.g. EEPROM), beginning at the specified physical address. Sequences in the external memory device may be as long as desired, as long as they do not cross page boundaries, which gives a maximum subroutine length of 256 bytes.

Table 43 – Execute Subroutine

RETN	1011			
1011XXXX				
Return from S	Subroutine			

Returns control back to the main sequence. Execution is transferred to the instruction following the SUBR instruction in the main sequence.

Table 44 – Return from Subroutine

Operational Modes

Filter Bypass Mode

The USS-725 is equipped with digital filters on the incoming parallel port signals that are used in protocol handshaking (Busy, nAck, PError, nFault, and Select). These are three-sample, unanimous-vote filters running at 12 MHz, and thus filter out all events closer together than 167 ns and pass all events further apart than 250 ns. Disabling the digital filters provides a slight performance improvement, at the expense of increased susceptibility to noise. It is **not** recommended to disable the digital filters when using the USS-725 in an application that drives across a cable.

The default state of these filters, on or off, is controlled by bit 1 in the USS-725 Configuration Byte, the first byte of the attached EEPROM (or other I^2C memory device). If that bit is set, the filters will be enabled. If the bit is clear, the filters will be disabled. See **USS-725 Configuration Byte** on page 6.

The state of the digital filters can also be controlled by software, which overrides the EEPROM default (see Table 30).

Note: If no external memory device is present, digital filters will be enabled.

High Drive Mode

The USS-725 output pads can operate with either totem-pole or open-drain drive. In totem-pole mode, the pads drive continuously with 14 mA current source/sink capability. In open-drain mode, the pads actively pull low when the output signal is low, but let the output float when the output signal is high. However, the pads drive actively for approximately 750 ns after the transition of any output signal to provide fast, clean signal transitions. This is the preferred mode of operation for IEEE 1284 applications.

The option of totem-pole or open-drain drive is controlled by bit 0 in the USS-725 Configuration Byte, the first byte of the attached EEPROM (or other I^2C memory device). If that bit is set, the pads will operate with open-drain drive and High Drive on signal transitions. If the bit is clear, the pads will operate with constant totem-pole drive. See **USS-725 Configuration Byte** on page 6.

Note: If no external memory device is present, the pads will operate with open-drain drive plus High Drive on signal transitions.

Self-Powered Mode

The USS-725 can be configured to operate in either bus-powered or self-powered applications. Configuration is accomplished by supplying a high or low voltage to the SELF_POWERED input pin.

If this input is high, the USS-725 will report a MaxPower of 0x00 (no power used from the USB bus) in the USB Configuration Descriptor. This value will be reported regardless of what is supplied by the external I^2C memory device. Also, the USS-725 will report a '1' (indicating self-powered status) in bit 0 of the information returned in response to a Get Status request from the host.

If the SELF_POWERED pin is low, the USS-725 will return the MaxPower value supplied by the external memory device without modification, and will report a '0' (indicating bus-powered status) in the information returned in response to a Get Status request from the host.

External Clock Mode

The USS-725 is designed to be used with an external 12 MHz crystal (see **External Circuitry Requirements** on page 31). The USS-725 can also be supplied with an external 3.3 V clock signal. If an external clock signal is used, it should be connected to the CLK_LO pin, and CLK_HI should be left unconnected.

The frequency of the supplied crystal or clock signal is selected with the CLKSEL0 and CLKSEL1 input pins. To use an external crystal or 12 MHz input clock signal, tie the CLKSEL0 and CLKSEL1 inputs to ground. To use a 48 MHz input clock signal, tie the CLKSEL0 and CLKSEL1 inputs high (3.3 V).

Limbo Mode

The USS-725 provides a "limbo mode" in which all of its output pads are placed in a high-impedance state. This mode is enabled by setting:

Pin number	Signal name	State
46	CLKSEL1	'1'
47	CLKSEL0	' 0 '
48	DISABLE_OUTS	' 0'

Table 45 – Limbo Mode

Disable Outputs Mode

The USS-725 provides a "disable output mode" in which all of the parallel port output pads are placed in a high-impedance state. The disabled output pins are PDATA0[7:0], PDATA1[7:0], NSELECTIN, NSTROBE (DIOW), NAUTOFD (DIOR), NINIT, HLH, CS1, CS0, and DA[2:0]. Setting the USS-725 into this mode will also cause the assertion of the Outputs Disabled bit in the Status Register (see page 18). This mode is enabled by setting:

Pin number	Signal name	State
46	CLKSEL1	' 0'
47	CLKSEL0	' 0'
48	DISABLE_OUTS	'1'

 Table 46 – Disable Outputs Mode

External Circuitry Requirements

The USS-725 is intended to be as close as possible to a single-chip solution. To accomplish this, it features an on-board USB transceiver, IEEE 1284 transceivers, oscillator, and power-up reset circuit.

The internal oscillator requires attaching a 12 MHz crystal and bias capacitors (see Figure 2).

Figure 2 – External Crystal Connection

To use the USS-725 parallel port as an IEEE 1284 level 2 compliant interface, all IEEE 1284 signals (except PLH) require an external 1.2 k $\Omega \pm 5\%$ pull-up resistor to 5 V (see Figure 3). The PLH signal requires a 7.5 k $\Omega \pm 5\%$ pull-down resistor to ground. The USS-725 VDD5 power supply should also be connected to a 5 V supply.

Figure 3 – IEEE 1284 Connections

The USS-725 connection to the USB cable for a bus-powered application is shown in Figure 4. Both DPLS and DMNS require 24 $\Omega \pm 1\%$ series resistors for matching the impedance of the USS-725 USB transceiver to the USB cable. A 1.5 k $\Omega \pm 5\%$ pull-up resistor to 3.3 V is required on the DPLS line for the device to enumerate as a full-speed device.

Figure 4 – USB Transceiver Connection (bus-powered)

For a self-powered application, the device must refrain from supplying power through the pull-up resistor when the device is attached to an unpowered bus. The external circuitry must also ensure that the DPLS and DMNS lines are in an appropriate state when the device is powered but not attached to a USB. Figure 5 shows an example connection to meet these requirements.

Figure 5 – USB Transceiver Connection (self-powered)

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of this data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Ambient Operating Temperature Range	ТА	0	70	°C
Storage Temperature	Tstg	-40	125	°C
Voltage on Any Pin with Respect to Ground		Vss - 0.3	VDD5 + 0.3	V
Power Supply Voltage with Respect to Ground	Vdd		4.6	V
Power Supply Voltage with Respect to Ground	VDD5		5.5	V

Table 47 – Absolute Maximum Ratings

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage: Low High	$f V_{IL} \ V_{IH}$		2.0		0.8	V V
Output Voltage: Low High	$f V_{OL} \ V_{OH}$		2.4		0.4	V V
Power Supply Voltage	$\mathbf{V}_{\mathrm{DD}}, \mathbf{V}_{\mathrm{DDA}}$		3	3.3	3.6	V
	$\mathbf{V}_{ ext{DD5}}$	5 V environment 3 V environment	4.375 3	5 3.3	5.5 3.6	V V

Note: $(T_A = 0 \text{ °C}, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = 0 \text{ V})$

Table 48 – DC Characteristics

Operating	Buspena
35 mA (typ)	350 µA (typ)
	35 mA (typ)

Note: $(T_A = 0 \circ C, V_{DD} = 3.3 V \pm 0.3 V, V_{SS} = 0 V)$

Table 49 – Power Supply Current

Timing Characteristics

I²C Memory Device Interface Timing

The I²C memory device interface supports the I²C "fast mode." Timing specifics are given below.

Figure 6 – I²C Memory Device Interface Timing

Parameter	Symbol	Value
Clock high time	T_{high}	$667 \pm 20 \text{ ns}$
Clock low time	T_{low}	$1,333 \pm 20 \text{ ns}$
Start condition hold time	T _{HD:STA}	$667 \pm 20 \text{ ns}$
Start condition setup time	T _{SU:STA}	$667 \pm 20 \text{ ns}$
Data output hold time	T _{HD:DAT}	$667 \pm 20 \text{ ns}$
Data output setup time	T _{SU:DAT}	$667 \pm 20 \text{ ns}$
Stop condition setup time	T _{SU:STO}	$667 \pm 20 \text{ ns}$
Required data valid before clock	T _{DSU}	84 ns
Bus free time	T _{BUF}	$1,333 \pm 20 \text{ ns}$

Table 50 – I²C Memory Device Interface Timing

USB Transceiver Timing Characteristics

The USS-725 USB transceiver complies with the timing and electrical requirements of the Universal Serial Bus Specification version 1.1.

Parallel Port Timing Characteristics

All input signals on the USS-725 parallel port are considered to be asynchronous, and are synchronized to the chip's internal system clock. All output signals are clocked using the chip's internal system clock, for which there is no external reference. The output signals should therefore be considered to be asynchronous. All IEEE 1284 protocol transactions comply with *IEEE 1284-1994*.

Clock

	Frequency	Duty Cycle
external crystal	$12~MHz\pm0.25\%$	n/a
external signal (CLKSEL0 = CLKSEL1 = 0)	$12~MHz\pm0.25\%$	10% - 90%
external signal (CLKSEL0 = CLKSEL1 = 1)	$48~MHz\pm0.25\%$	10% - 90%

Note: Clock signal frequency is measured at $V_{DD}/2$ point. Rise and fall times should be 2 ns or less.

Table 51 – Clock Requirements

Reset

The USS-725 includes an on-chip power-up reset block. If the external reset signal is used to provide a hardware power-on reset, the RESET pin should be asserted high for a least 300 μ s while the clock is running.

Physical Diagram

Figure 7 – Package Outline Diagram